2,542 research outputs found

    Developing Future UK Energy Performance Standards: The St Nicholas Court project, Final Report

    Get PDF
    The St Nicholas Court Project was set up to explore the implications of an enhanced energy performance standard for new housing for the design, construction and performance of timber framed dwellings. The energy performance standard, EPS08, is modelled on proposals made by the DETR in June 2000 for a possible review of Part L of the Building Regulations in the second half of the present decade. The overall goal of the project was to support the next revision of Part L through an enhanced body of qualitative and quantitative evidence on options and impacts. The seeds of the project were contained in a report – Towards Sustainable Housing - commissioned by Joseph Rowntree Foundation at the start of the last review of this part of the Building Regulations. The project itself has been based on the St Nicholas Court Development which involves the design and construction of a group of 18 low energy and affordable dwellings on a brown field site in York (see site plan below). The research project was established in two stages. Initial funding was provided by the Joseph Rowntree Foundation in the spring of 1999. This ensured the involvement of the research team from the outset of the development process. Additional funding was provided from late 2000 by the Housing Corporation and by the DETR through the Partners in Innovation programme (responsibility for which now lies with the DTI). The research project was originally divided into five phases – project definition, design, construction, occupation, and communication and dissemination. Delays in site acquisition initially allowed the design phase to be extended, but ultimately forced the abandonment of the construction and occupation phases, and the scaling down of the communication and dissemination phase. Despite the delays, the development itself will now go ahead, with construction starting in mid-2003

    Evidence for heat losses via party wall cavities in masonry construction

    Get PDF
    This paper presents empirical evidence and analysis that supports the existence of a significant heat loss mechanism resulting from air movement through cavities in party walls in masonry construction. A range of heat loss experiments were undertaken as part of the Stamford Brook housing field trial in Altrincham in the United Kingdom. Co-heating tests showed a large discrepancy between the predicted and measured whole house heat loss coefficients. Analysis of the co-heating results, along with internal temperature data, thermal imaging and a theoretical analysis indicated that the most likely explanation for the discrepancy was bypassing of the thermal insulation via the uninsulated party wall cavities. The data show that such a bypass mechanism is potentially the largest single contributor to heat loss in terraced dwellings built to the 2006 revision of the Building Regulations. A comparable convective heat bypass associated with masonry party walls was identified in the late 1970s during the course of the Twin Rivers Project in the United States, albeit in a somewhat different construction from that used at Stamford Brook. A similar effect was also reported in the United Kingdom in the mid 1990s. However, it appears that no action was taken at that time either to confirm the results, to develop any technical solutions, or to amend standards for calculating heat losses from buildings. Current conventions for heat loss calculations in the United Kingdom do not take account of heat losses associated with party walls and it is suggested by the authors that such conventions may need to be updated to take account of the effect described in this paper. In the final part of the paper, the authors propose straightforward solutions to prevent bypassing of roof insulation via party walls by for example filling the cavity of the party wall with mineral fibre insulation, or by inserting a cavity closer across the cavity in the plane of the roof insulation.Practical application: The heat bypass mechanism described in this paper is believed by the authors to contribute to a significant proportion of heat loss from buildings in the UK constructed with clear cavities such as those found in separating walls between cavity masonry dwellings. It is proposed that relatively simple design changes could be undertaken to eliminate such heat loss pathways from new buildings. In addition, simple and cost effective measures are envisaged that could be used to minimise or eliminate the bypass from existing buildings. Such an approach could give rise to a significant reduction in carbon emissions from UK housing

    The case for joined-up research on carbon emissions from the building stock: adding value to household and building energy datasets

    Get PDF
    To reach UK objectives for reducing carbon emissions, it is argued that joined-up research on energy use in buildings is essential to develop and support government policy initiatives. The performance based approach introduced in Part-L of the 2006 Building Regulations has further underlined the role of coordinated research to monitor their effectiveness and provide feedback for subsequent revisions. Unfortunately, differences in dwelling classifications systems used in major household surveys currently hinder much of the supporting analysis that might improve SAP and other energy models. The Carbon Reduction in Buildings project has begun a process of integrating or organising existing building energy datasets into a coherent structure for the domestic sector. In addition, it is proposed to archive these for researchers via a building data repository that would facilitate joined-up research more widely

    Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications

    Get PDF
    The sustained rapid growth and learning rates displayed by solar PV and wind electricity generation capacity over recent decades appear to be unprecedented. With these technologies now available at costs competitive with - or below - those of fossil fuel incumbents in many parts of the world, high rates of growth appear likely to continue. In this paper we use ‘top-down’ extrapolation of global trends and simple and transparent models to attempt to falsify the proposition that PV and wind have the potential to achieve dominance in global primary energy supply by 2050. We project future deployment of PV and wind using a logistic substitution model, and examine a series of potentially fundamental constraints that could inhibit continued growth. Adopting conservative assumptions, we find no insuperable constraints across physical and raw materials requirements, manufacturing capacity, energy balance (EROEI), system integration and macro-economic conditions, to this outcome. We also demonstrate synergy with direct air carbon capture and storage (DACCS) that would allow the achievement of global net-zero CO2 emissions by mid-century. Achieving such an outcome would require large scale reconfiguration of the architecture of global and regional energy systems, particularly from 2040 onwards. Low cost primary electricity is likely to be a significant factor in driving such a reorganisation. But given the speed and depth of the transition, hurdles will remain that will require foresight and strategic, coordinated action to overcome

    Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: Understanding the gap between designed and real performance: lessons from Stamford Brook.

    Get PDF
    This report is aimed at those with interests in the procurement, design and construction of new dwellings both now and in the coming years as the Government’s increasingly stringent targets for low and zero carbon housing approach. It conveys the results of a research project, carried out between 2001 and 2008, that was designed to evaluate the extent to which low carbon housing standards can be achieved in the context of a large commercial housing development. The research was led by Leeds Metropolitan University in collaboration with University College London and was based on the Stamford Brook development in Altrincham, Cheshire. The project partners were the National Trust, Redrow and Taylor Wimpey and some 60 percent of the planned 700 dwelling development has been completed up to June 2008. As the UK house building industry and its suppliers grapple with the challenges of achieving zero carbon housing by 2016, the lessons arising from this project are timely and of considerable value. Stamford Brook has demonstrated that designing masonry dwellings to achieve an enhanced energy standard is feasible and that a number of innovative approaches, particularly in the area of airtightness, can be successful. The dwellings, as built, exceed the Building Regulations requirements in force at the time but tests on the completed dwellings and longer term monitoring of performance has shown that, overall, energy consumption and carbon emissions, under standard occupancy, are around 20 to 25 percent higher than design predictions. In the case of heat loss, the discrepancy can be much higher. The report contains much evidence of considerable potential but points out that realising the design potential requires a fundamental reappraisal of processes within the industry from design and construction to the relationship with its supply chain and the development of the workforce. The researchers conclude that, even when builders try hard, current mainstream technical and organisational practices together with industry cultures present barriers to consistent delivery of low and zero carbon performance. They suggest that the underlying reasons for this are deeply embedded at all levels of the house building industry. They point out also that without fundamental change in processes and cultures, technological innovations, whether they be based on traditional construction or modern methods are unlikely to reach their full potential. The report sets out a series of wide ranging implications for new housing in the UK, which are given in Chapter 14 and concludes by firmly declaring that cooperation between government, developers, supply chains, educators and researchers will be crucial to improvement. The recommendations in this report are already being put into practice by the researchers at Leeds Metropolitan University and University College London in their teaching and in further research projects. The implications of the work have been discussed across the industry at a series of workshops undertaken in 2008 as part of the LowCarb4Real project (see http://www.leedsmet.ac.uk/as/cebe/projects/lowcarb4real/index.htm). In addition, the learning is having an impact on the work of the developers (Redrow and Taylor Wimpey) who, with remarkable foresight and enthusiasm, hosted the project. This report seeks to make the findings more widely available and is offered for consideration by everyone who has a part to play in making low and zero carbon housing a reality

    Preparing the built environment for climate change

    Get PDF

    Dynamic spatial dispersion of repolarization is present in regions critical for ischemic ventricular tachycardia ablation

    Get PDF
    Background: The presence of dynamic substrate changes may facilitate functional block and reentry in ventricular tachycardia (VT). Objective: We aimed to study dynamic ventricular repolarization changes in critical regions of the VT circuit during sensed single extrastimulus pacing known as the Sense Protocol (SP). Methods: Twenty patients (aged 67 ± 9 years, 17 male) underwent VT ablation. A bipolar voltage map was obtained during sinus rhythm (SR) and right ventricular SP pacing at 20 ms above ventricular effective refractory period. Ventricular repolarization maps were constructed. Ventricular repolarization time (RT) was calculated from unipolar electrogram T waves, using the Wyatt method, as the dV/dtmax of the unipolar T wave. Entrainment or pace mapping confirmed critical sites for ablation. Results: The median global repolarization range (max-min RT per patient) was 166 ms (interquartile range [IQR] 143-181 ms) during SR mapping vs 208 ms (IQR 182-234) during SP mapping (P = .0003 vs intrinsic rhythm). Regions of late potentials (LP) had a longer RT during SP mapping compared to regions without LP (mean 394 ± 40 ms vs 342 ± 25 ms, P < .001). In paired regions of normal myocardium there was no significant spatial dispersion of repolarization (SDR)/10 mm2 during SP mapping vs SR mapping (SDR 11 ± 6 ms vs 10 ± 6 ms, P = .54). SDR/10 mm2 was greater in critical areas of the VT circuit during SP mapping 63 ± 29 ms vs SR mapping 16 ± 9 ms (P < .001). Conclusion: Ventricular repolarization is prolonged in regions of LP and increases dynamically, resulting in dynamic SDR in critical areas of the VT circuit. These dynamic substrate changes may be an important factor that facilitates VT circuits

    Cost-effectiveness of ablation of ventricular tachycardia in ischaemic cardiomyopathy: Limitations in the trial evidence base

    Get PDF
    Objective: Catheter ablation is an important treatment for ventricular tachycardia (VT) that reduces the frequency of episodes of VT. We sought to evaluate the cost-effectiveness of catheter ablation versus antiarrhythmic drug (AAD) therapy. / Methods: A decision-analytic Markov model was used to calculate the costs and health outcomes of catheter ablation or AAD treatment of VT for a hypothetical cohort of patients with ischaemic cardiomyopathy and an implantable cardioverter-defibrillator. The health states and input parameters of the model were informed by patient-reported health-related quality of life (HRQL) data using randomised clinical trial (RCT)-level evidence wherever possible. Costs were calculated from a 2018 UK perspective. / Results: Catheter ablation versus AAD therapy had an incremental cost-effectiveness ratio (ICER) of £144 150 (€161 448) per quality-adjusted life-year gained, over a 5-year time horizon. This ICER was driven by small differences in patient-reported HRQL between AAD therapy and catheter ablation. However, only three of six RCTs had measured patient-reported HRQL, and when this was done, it was assessed infrequently. Using probabilistic sensitivity analyses, the likelihood of catheter ablation being cost-effective was only 11%, assuming a willingness-to-pay threshold of £30 000 used by the UK’s National Institute for Health and Care Excellence. / Conclusion: Catheter ablation of VT is unlikely to be cost-effective compared with AAD therapy based on the current randomised trial evidence. However, better designed studies incorporating detailed and more frequent quality of life assessments are needed to provide more robust and informed cost-effectiveness analyses

    Lost generation: Reflections on resilience and flexibility from an energy system architecture perspective

    Get PDF
    Whole energy system modelling is a valuable tool to support the development of policy to decarbonise energy systems, and has been used extensively in the UK for this purpose. However, quantitative insights produced by such models necessarily omit potentially important features of physical and engineering reality. The authors argue that important socio-technical insights can be gained by studying critical events such as the loss of 2.1 GW generation from the electricity system of Great Britain on 9th August 2019, in conjunction with literature on the behaviour of complex systems. Among these insights is the idea that models of the operation and evolution of energy systems can never be complete. Both system behaviour (operation) and the emergence and evolution of structure in such systems are formally uncomputable. This provides a starting point for a discussion of the need for additional tools, drawn from the System Architecture literature, to support the design and realisation of future, fully-decarbonised systems with high penetrations of renewable energy. Desirable properties of System Architectures, including current and future Energy System Architectures, are discussed. These include resilience and flexibility, for which there is an extensive literature. They also include the properties of comprehensibility, which helps to make complex systems easier to operate, and of evolvability, for which a working definition is offered

    Possible future impacts of elevated levels of atmospheric CO2 on human cognitive performance and on the design and operation of ventilation systems in buildings

    Get PDF
    This paper brings together a rapid evidence assessment of impacts of elevated CO2 concentrations on human cognition with IPCC projections of atmospheric CO2 concentration by the end of the present century, and an analysis of potential consequences of increased atmospheric CO2 concentrations for ventilation systems in buildings and other enclosed spaces. Whilst only limited research has been done on the effect of CO2 on cognition (as opposed to air quality in general), half of the studies reviewed indicate that human cognitive performance declines with increasing CO2concentrations. Hence, given the likelihood of increasing atmospheric CO2 concentration by the end of the 21st century, direct impacts of anthropogenic CO2 emissions on human cognitive performance may be unavoidable. Attempts to minimise these direct impacts are likely to result in significant indirect impacts on the engineering of ventilation systems and associated energy use in all enclosed spaces including buildings and transport systems. Practical application : This paper concerns what may well be one of the most important long-term drivers of the design, management, operation and regulation of ventilation systems over the remainder of the 21st century. It will be relevant to professionals, particularly at senior levels in the building industry
    corecore